English

Leap year

A leap year (also known as an intercalary year or bissextile year) is a calendar year containing one additional day (or, in the case of lunisolar calendars, a month) added to keep the calendar year synchronized with the astronomical or seasonal year. Because seasons and astronomical events do not repeat in a whole number of days, calendars that have the same number of days in each year drift over time with respect to the event that the year is supposed to track. By inserting (also called intercalating) an additional day or month into the year, the drift can be corrected. A year that is not a leap year is called a common year.Every year that is exactly divisible by four is a leap year, except for years that are exactly divisible by 100, but these centurial years are leap years if they are exactly divisible by 400. For example, the years 1700, 1800, and 1900 are not leap years, but the years 1600 and 2000 are.if (year is not divisible by 4) then (it is a common year)else if (year is not divisible by 100) then (it is a leap year)else if (year is not divisible by 400) then (it is a common year)else (it is a leap year)Woman capturing man with butterfly-net.Women anxiously awaiting January 1Histrionically preparingIf a period fixed by weeks, months, and years does not commence from the beginning of a week, month, or year, it ends with the ending of the day which precedes the day of the last week, month, or year which corresponds to that on which it began to commence. But if there is no corresponding day in the last month, the period ends with the ending of the last day of the last month. A leap year (also known as an intercalary year or bissextile year) is a calendar year containing one additional day (or, in the case of lunisolar calendars, a month) added to keep the calendar year synchronized with the astronomical or seasonal year. Because seasons and astronomical events do not repeat in a whole number of days, calendars that have the same number of days in each year drift over time with respect to the event that the year is supposed to track. By inserting (also called intercalating) an additional day or month into the year, the drift can be corrected. A year that is not a leap year is called a common year. For example, in the Gregorian calendar, each leap year has 366 days instead of 365, by extending February to 29 days rather than the common 28. These extra days occur in years which are multiples of four (with the exception of centennial years not divisible by 400). Similarly, in the lunisolar Hebrew calendar, Adar Aleph, a 13th lunar month, is added seven times every 19 years to the twelve lunar months in its common years to keep its calendar year from drifting through the seasons. In the Bahá'í Calendar, a leap day is added when needed to ensure that the following year begins on the vernal equinox. The name 'leap year' probably comes from the fact that while a fixed date in the Gregorian calendar normally advances one day of the week from one year to the next, the day of the week in the 12 months following the leap day (from March 1 through February 28 of the following year) will advance two days due to the extra day (thus 'leaping over' one of the days in the week). For example, Christmas Day (December 25) fell on a Sunday in 2016, Monday in 2017, and Tuesday in 2018, then will fall on Wednesday in 2019 but then 'leaps' over Thursday to fall on a Friday in 2020. The length of a day is also occasionally changed by the insertion of leap seconds into Coordinated Universal Time (UTC), owing to the variability of Earth's rotational period. Unlike leap days, leap seconds are not introduced on a regular schedule, since the variability in the length of the day is not entirely predictable. In the Gregorian calendar, the standard calendar in most of the world, most years that are multiples of 4 are leap years. In each leap year, the month of February has 29 days instead of 28. Adding one extra day in the calendar every four years compensates for the fact that a period of 365 days is shorter than a tropical year by almost 6 hours. Some exceptions to this basic rule are required since the duration of a tropical year is slightly less than 365.25 days. The Gregorian reform modified the Julian calendar's scheme of leap years as follows: Over a period of four centuries, the accumulated error of adding a leap day every four years amounts to about three extra days. The Gregorian calendar therefore drops three leap days every 400 years, which is the length of its leap cycle. This is done by dropping February 29 in the three century years (multiples of 100) that cannot be exactly divided by 400. The years 1600, 2000 and 2400 are leap years, while 1700, 1800, 1900, 2100, 2200 and 2300 are not leap years. By this rule, the average number of days per year is 365 + ​1⁄4 − ​1⁄100 + ​1⁄400 = 365.2425. The rule can be applied to years before the Gregorian reform (the proleptic Gregorian calendar), if astronomical year numbering is used. The Gregorian calendar was designed to keep the vernal equinox on or close to March 21, so that the date of Easter (celebrated on the Sunday after the ecclesiastical full moon that falls on or after March 21) remains close to the vernal equinox. The 'Accuracy' section of the 'Gregorian calendar' article discusses how well the Gregorian calendar achieves this design goal, and how well it approximates the tropical year. The following pseudocode determines whether a year is a leap year or a common year in the Gregorian calendar (and in the proleptic Gregorian calendar before 1582). The year variable being tested is the integer representing the number of the year in the Gregorian calendar. The algorithm applies to proleptic Gregorian calendar years before 1, but only if the year is expressed with astronomical year numbering. It is not valid for the BC or BCE notation. The algorithm is not necessarily valid for years in the Julian calendar, such as years before 1752 in the British Empire. The year 1700 was a leap year in the Julian calendar, but not in the Gregorian calendar.

[ "Astronomy", "Classics", "Ancient history", "Determination of the day of the week", "Julian year", "Solar cycle (calendar)" ]
Parent Topic
Child Topic
    No Parent Topic