English

Identification friend or foe

Identification, friend or foe (IFF) is a radar-based identification system designed for command and control. It uses a transponder that listens for an interrogation signal and then sends a response consisting of a unique signal that identifies the broadcaster. It enables military and civilian air traffic control interrogation systems to identify aircraft, vehicles or forces as friendly and to determine their bearing and range from the interrogator. IFF may be used by both military and civilian aircraft. IFF was first developed during the Second World War, with the arrival of radar, and several infamous friendly fire incidents. Identification, friend or foe (IFF) is a radar-based identification system designed for command and control. It uses a transponder that listens for an interrogation signal and then sends a response consisting of a unique signal that identifies the broadcaster. It enables military and civilian air traffic control interrogation systems to identify aircraft, vehicles or forces as friendly and to determine their bearing and range from the interrogator. IFF may be used by both military and civilian aircraft. IFF was first developed during the Second World War, with the arrival of radar, and several infamous friendly fire incidents. Despite the name, IFF can only positively identify friendly targets, not hostile ones. If an IFF interrogation receives no reply or an invalid reply, the object cannot be identified as friendly, but is not positively identified as foe (it may, for instance, be a friendly aircraft with an inoperative or malfunctioning transponder). There are in addition many reasons that friendly aircraft may not properly reply to IFF. IFF is a tool within the broader military action of Combat Identification (CID), 'the process of attaining an accurate characterization of detected objects in the operational environment sufficient to support an engagement decision.' The broadest characterization is that of friend, enemy, neutral, or unknown. CID not only can reduce friendly fire incidents, but also contributes to overall tactical decision-making. With the successful deployment of radar systems for air defence during World War II, combatants were immediately confronted with the difficulty of distinguishing friendly aircraft from hostile ones; by that time, aircraft were flown at high speed and altitude, making visual identification impossible, and the targets showed up as featureless blips on the radar screen.This led to incidents such as the Battle of Barking Creek, over Britain,and the air attack on the fortress of Koepenick over Germany. Already before the deployment of their Chain Home radar system (CH), the RAF had considered the problem of IFF. Robert Watson-Watt had filed patents on such systems in 1935 and 1936. By 1938, researchers at Bawdsey Manor began experiments with 'reflectors' consisting of dipole antennas tuned to resonate to the primary frequency of the CH radars. When a pulse from the CH transmitter hit the aircraft, the antennas would resonate for a short time, increasing the amount of energy returned to the CH receiver. The antenna was connected to a motorized switch that periodically shorted it out, preventing it from producing a signal. This caused the return on the CH set to periodically lengthen and shorten as the antenna was turned on and off. In practice, the system was found to be too unreliable to use; the return was highly dependent on the direction the aircraft was moving relative to the CH station, and often returned little or no additional signal. It had been suspected this system would be of little use in practice. When that turned out to be the case, the RAF turned to an entirely different system that was also being planned. This consisted of a set of tracking stations using HF/DF radio direction finders. Their aircraft radios were modified to send out a 1 kHz tone for 14 seconds every minute, allowing the stations ample time to measure the aircraft's bearing. Several such stations were assigned to each 'sector' of the air defence system, and sent their measurements to a plotting station at sector headquarters, who used triangulation to determine the aircraft's location. Known as 'pip-squeak', the system worked, but was labour-intensive and did not display its information directly to the radar operators. A system that worked directly with the radar was clearly desirable. The first active IFF transponder (transmitter/responder) was the IFF Mark I which was used experimentally in 1939. This used a regenerative receiver, which fed a small amount of the amplified output back into the input, strongly amplifying even small signals as long as they were of a single frequency (like Morse code, but unlike voice transmissions). They were tuned to the signal from the CH radar (20–30 MHz), amplifying it so strongly that it was broadcast back out the aircraft's antenna. Since the signal was received at the same time as the original reflection of the CH signal, the result was a lengthened 'blip' on the CH display which was easily identifiable. In testing, it was found that the unit would often overpower the radar or produce too little signal to be seen, and at the same time, new radars were being introduced using new frequencies. Instead of putting Mark I into production, a new IFF Mark II was introduced in early 1940. Mark II had a series of separate tuners inside tuned to different radar bands that it stepped through using a motorized switch, while an automatic gain control solved the problem of it sending out too much signal. Mark II was technically complete as the war began, but a lack of sets meant it was not available in quantity and only a small number of RAF aircraft carried it by the time of the Battle of Britain. Pip-squeak was kept in operation during this period, but as the Battle ended, IFF Mark II was quickly put into full operation. Pip-squeak was still used for areas over land where CH did not cover, as well as an emergency guidance system. Even by 1940 the complex system of Mark II was reaching its limits while new radars were being constantly introduced. By 1941, a number of sub-models were introduced that covered different combinations of radars, common naval ones for instance, or those used by the RAF. But the introduction of radars based on the microwave-frequency cavity magnetron rendered this obsolete; there was simply no way to make a responder operating in this band using contemporary electronics.

[ "Radar", "Identification (information)", "Signal" ]
Parent Topic
Child Topic
    No Parent Topic