English

Traffic collision avoidance system

A traffic collision avoidance system or traffic alert and collision avoidance system (both abbreviated as TCAS, and pronounced /tiːkæs/; TEE-kas) is an aircraft collision avoidance system designed to reduce the incidence of mid-air collisions between aircraft. It monitors the airspace around an aircraft for other aircraft equipped with a corresponding active transponder, independent of air traffic control, and warns pilots of the presence of other transponder-equipped aircraft which may present a threat of mid-air collision (MAC). It is a type of airborne collision avoidance system mandated by the International Civil Aviation Organization to be fitted to all aircraft with a maximum take-off mass (MTOM) of over 5,700 kg (12,600 lb) or authorized to carry more than 19 passengers. CFR 14, Ch I, part 135 requires that TCAS I be installed for aircraft with 10-30 passengers and TCAS II for aircraft with more than 30 passengers. A traffic collision avoidance system or traffic alert and collision avoidance system (both abbreviated as TCAS, and pronounced /tiːkæs/; TEE-kas) is an aircraft collision avoidance system designed to reduce the incidence of mid-air collisions between aircraft. It monitors the airspace around an aircraft for other aircraft equipped with a corresponding active transponder, independent of air traffic control, and warns pilots of the presence of other transponder-equipped aircraft which may present a threat of mid-air collision (MAC). It is a type of airborne collision avoidance system mandated by the International Civil Aviation Organization to be fitted to all aircraft with a maximum take-off mass (MTOM) of over 5,700 kg (12,600 lb) or authorized to carry more than 19 passengers. CFR 14, Ch I, part 135 requires that TCAS I be installed for aircraft with 10-30 passengers and TCAS II for aircraft with more than 30 passengers. ACAS / TCAS is based on secondary surveillance radar (SSR) transponder signals, but operates independently of ground-based equipment to provide advice to the pilot on potentially conflicting aircraft. In modern glass cockpit aircraft, the TCAS display may be integrated in the Navigation Display (ND) or Electronic Horizontal Situation Indicator (EHSI); in older glass cockpit aircraft and those with mechanical instrumentation, such an integrated TCAS display may replace the mechanical Vertical Speed Indicator (which indicates the rate with which the aircraft is descending or climbing). Research into collision avoidance systems has been ongoing since at least the 1950s, and the airline industry has been working with the Air Transport Association of America (ATA) since 1955 toward a collision avoidance system. ICAO and aviation authorities such as the Federal Aviation Administration were spurred into action by the 1956 Grand Canyon mid-air collision. It was not until the mid-1970s, however, that research centered on using signals from ATCRBS airborne transponders as the cooperative element of a collision avoidance system. This technical approach allows a collision avoidance capability on the flight deck, which is independent of the ground system. In 1981, the FAA announced a decision to implement an aircraft collision avoidance concept called the Traffic Alert and Collision Avoidance System (TCAS). The concept is based upon agency and industry development efforts in the areas of beacon based collision avoidance systems and air-to-air discrete address communications techniques utilizing Mode S airborne transponder message formats. A short time later, prototypes of TCAS II were installed on two Piedmont Airlines Boeing 727 aircraft, and were flown on regularly scheduled flights. Although the displays were located outside the view of the flight crew and seen only by trained observers, these tests did provide valuable information on the frequency and circumstances of alerts and their potential for interaction with the ATC system. On a follow-on phase II program, a later version of TCAS II was installed on a single Piedmont Airlines Boeing 727, and the system was certified in April 1986, then subsequently approved for operational evaluation in early 1987. Since the equipment was not developed to full standards, the system was only operated in visual meteorological conditions (VMC). Although the flight crew operated the system, the evaluation was primarily for the purpose of data collection and its correlation with flight crew and observer observation and response. Later versions of TCAS II manufactured by Bendix/King Air Transport Avionics Division were installed and approved on United Airlines airplanes in early 1988. Similar units manufactured by Honeywell were installed and approved on Northwest Airlines airplanes in late 1988. This limited installation program operated TCAS II units approved for operation as a full-time system in both visual and instrument meteorological conditions (IMC) on three different aircraft types. The operational evaluation programs continued through 1988 to validate the operational suitability of the systems

[ "Collision", "Air traffic control", "collision avoidance", "requirements state machine language" ]
Parent Topic
Child Topic
    No Parent Topic