The Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Mission, is a NASA space telescope designed to detect gamma-ray bursts (GRBs). It was launched on November 20, 2004, aboard a Delta II rocket. Headed by principal investigator Neil Gehrels, NASA Goddard Space Flight Center, the mission was developed in a joint partnership between Goddard and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorers program (MIDEX). The Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Mission, is a NASA space telescope designed to detect gamma-ray bursts (GRBs). It was launched on November 20, 2004, aboard a Delta II rocket. Headed by principal investigator Neil Gehrels, NASA Goddard Space Flight Center, the mission was developed in a joint partnership between Goddard and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorers program (MIDEX). Swift is a multi-wavelength space observatory dedicated to the study of gamma-ray bursts. Its three instruments work together to observe GRBs and their afterglows in the gamma-ray, X-ray, ultraviolet, and optical wavebands. Based on continuous scans of the area of the sky with one of the instrument's monitors, Swift uses momentum wheels to autonomously slew into the direction of possible GRBs. The name 'Swift' is not a mission-related acronym, but rather a reference to the instrument's rapid slew capability, and the nimble bird of the same name. All of Swift's discoveries are transmitted to the ground and those data are available to other observatories which join Swift in observing the GRBs. In the time between GRB events, Swift is available for other scientific investigations, and scientists from universities and other organizations can submit proposals for observations. The Swift Mission Operation Center (MOC), where commanding of the satellite is performed, is located in State College, Pennsylvania and operated by the Pennsylvania State University and industry subcontractors. The Swift main ground station is located at the Broglio Space Centre near Malindi on the coast of Eastern Kenya, and is operated by the Italian Space Agency. The Swift Science Data Center (SDC) and archive are located at the Goddard Space Flight Center outside Washington D.C. The UK Swift Science Data Centre is located at the University of Leicester. The Swift spacecraft bus was built by Spectrum Astro, which was later acquired by General Dynamics Advanced Information Systems, which was in turn acquired by Orbital Sciences Corporation (now Northrop Grumman). The BAT detects GRB events and computes its coordinates in the sky. It covers a large fraction of the sky (over one steradian fully coded, three steradians partially coded; by comparison, the full sky solid angle is 4π or about 12.6 steradians). It locates the position of each event with an accuracy of 1 to 4 arc-minutes within 15 seconds. This crude position is immediately relayed to the ground, and some wide-field, rapid-slew ground-based telescopes can catch the GRB with this information. The BAT uses a coded-aperture mask of 52,000 randomly placed 5 mm lead tiles, 1 metre above a detector plane of 32,768 four mm CdZnTe hard X-ray detector tiles; it is purpose-built for Swift. Energy range: 15–150 keV. The XRT can take images and perform spectral analysis of the GRB afterglow. This provides more precise location of the GRB, with a typical error circle of approximately 2 arcseconds radius. The XRT is also used to perform long-term monitoring of GRB afterglow light-curves for days to weeks after the event, depending on the brightness of the afterglow. The XRT uses a Wolter Type I X-ray telescope with 12 nested mirrors, focused onto a single MOS charge-coupled device (CCD) similar to those used by the XMM-Newton EPIC MOS cameras. On-board software allows fully automated observations, with the instrument selecting an appropriate observing mode for each object, based on its measured count rate. The telescope has an energy range of 0.2–10 keV. After Swift has slewed towards a GRB, the UVOT is used to detect an optical afterglow. The UVOT provides a sub-arcsecond position and provides optical and ultra-violet photometry through lenticular filters and low resolution spectra (170–650 nm) through the use of its optical and UV grisms. The UVOT is also used to provide long-term follow-ups of GRB afterglow lightcurves. The UVOT is based on the XMM-Newton mission's Optical Monitor (OM) instrument, with improved optics and upgraded onboard processing computers.