Spatial ability or visuo-spatial ability is the capacity to understand, reason and remember the spatial relations among objects or space. Spatial ability or visuo-spatial ability is the capacity to understand, reason and remember the spatial relations among objects or space. Visual-spatial abilities are used for everyday use from navigation, understanding or fixing equipment, understanding or estimating distance and measurement, and performing on a job. Spatial abilities are also important for success in fields such as sports, technical aptitude, mathematics, natural sciences, engineering, economic forecasting, meteorology, chemistry and physics. Not only do spatial abilities involve understanding the outside world, but they also involve processing outside information and reasoning with it through representation in the mind. Spatial ability is the capacity to understand, reason and remember the spatial relations among objects or space. There are four common types of spatial abilities which include spatial or visuo-spatial perception, spatial visualization, mental folding and mental rotation. Each of these abilities have unique properties and importance to many types of tasks whether in certain jobs or everyday life. For example, spatial perception is defined as the ability to perceive spatial relationships in respect to the orientation of one's body despite distracting information. Mental rotation on the other hand is the mental ability to manipulate and rotate 2D or 3D objects in space quickly and accurately. Lastly, spatial visualization is characterized as complicated multi-step manipulations of spatially presented information. These three abilities are mediated and supported by a fourth spatial cognitive factor known as spatial working memory. Spatial working memory is the ability to temporarily store a certain amount of visual-spatial memories under attentional control in order to complete a task. This cognitive ability mediates individual differences in the capacity for higher level spatial abilities such as mental rotation. Spatial perception is defined as the ability to perceive spatial relationships in respect to the orientation of one's body despite distracting information. It consists of being able to perceive and visually understand outside spatial information such as features, properties, measurement, shapes, position and motion. For example, when one is navigating through a dense forest they are using spatial perception and awareness. Another example is when trying to understand the relations and mechanics inside of a car, they are relying on their spatial perception to understand its visual framework. Tests that measure spatial perception include the rod and frame test, where subjects must place a rod vertically while viewing a frame orientation of 22 degrees in angle, or the water-level task, where subjects have to draw or identify a horizontal line in a tilted bottle. Spatial perception is also very relevant in sports. For example, a study found that cricket players who were faster at picking up information from briefly presented visual displays were significantly better batsmen in an actual game. A 2015 study published in the Journal of Vision found that soccer players had higher perceptual ability for body kinematics such as processing multitasking crowd scenes which involve pedestrians crossing a street or complex dynamic visual scenes. Another study published in the Journal of Human Kinetics on fencing athletes found that achievement level was highly correlated with spatial perceptual skills such as visual discrimination, visual-spatial relationships, visual sequential memory, narrow attentional focus and visual information processing. A review published in the journal Neuropsychologia found that spatial perception involves attributing meaning to an object or space, so that their sensory processing is actually part of semantic processing of the incoming visual information. The review also found that spatial perception involves the human visual system in the brain and the parietal lobule which is responsible for visuomotor processing and visually goal-directed action. Studies have also found that individuals who played first person shooting games had better spatial perceptual skills like faster and more accurate performance in a peripheral and identification task while simultaneously performing a central search. Researchers suggested that, in addition to enhancing the ability to divide attention, playing action games significantly enhances perceptual skills like top-down guidance of attention to possible target locations. Mental rotation is the ability to mentally represent and rotate 2D and 3D objects in space quickly and accurately, while the object's features remain unchanged. Mental representations of physical objects can help utilize problem solving and understanding. For example, Hegarty (2004) showed that people manipulate mental representations for reasoning about mechanical problems, such as how gears or pulleys work. Similarly, Schwartz and Black (1999) found that doing such mental simulations such as pouring water improves people's skill to find the solution to questions about the amount of tilt required for containers of different heights and widths. In the field of sports psychology, coaches for a variety of sports (e.g. basketball, gymnastics, soccer or golf) have promoted players to use mental imagery and manipulation as one technique for performance in their game. (Jones & Stuth, 1997) Recent research (e.g., Cherney, 2008) has also demonstrated evidence that playing video games with consistent practice can improve mental rotation skills, for example improvements in women's scores after practice with a game that involved a race within a 3-D environment. Same effects have been seen playing action video games such as Unreal Tournament as well as the popular mainstream game Tetris. Jigsaw puzzles and Rubik's cube are also activities that involve higher level of mental rotation and can be practiced to improve spatial abilities over time. Mental rotation is also unique and distinct from the other spatial abilities because it also involves areas associated with motor simulation in the brain. Spatial visualization is characterized as complicated multi-step manipulations of spatially presented information. It involves visual imagery which is the ability to mentally represent visual appearances of an object, and spatial imagery which consists of mentally representing spatial relations between the parts or locations of the objects or movements. Spatial visualization is especially important in the domains of science and technology. For example, an astronomer must mentally visualize the structures of a solar system and the motions of the objects within it. An engineer mentally visualizes the interactions of the parts of a machine or building that they are assigned to design or work with. Chemists must be able to understand formulas which can be viewed as abstract models of molecules with most of the spatial information deleted; spatial skills are important in restoring that information when more detailed mental models of the molecules are needed in the formulas.