English

Docking and berthing of spacecraft

Docking and berthing of spacecraft is the joining of two space vehicles. This connection can be temporary, or semipermanent such as for space station modules.A first docking with two uncrewed Soyuz spacecraft – the first fully automated space docking in the history of space flight – was made with the Kosmos 186 and Kosmos 188 missions on October 30, 1967.It was used for the first docking to a space station in the history of space flight, with the Soyuz 10 and Soyuz 11 missions that docked to the Soviet space station Salyut 1 in 1971. The docking system was upgraded in the mid-1980s to allow the docking of 20 ton modules to the Mir space station. It has a circular transfer passage that has a diameter of 800 mm (31 in) and is manufactured by RKK Energiya.Used on ISS (Connects Zvezda to Zarya, Pirs & Poisk)Used for the first time on Tiangong 1 space station and will be used on future Chinese space stations and with future Chinese cargo resupply vehicles.The IBDM is designed to be compliant with the International Docking System Standard (IDSS) and is hence compatible with the future ISS International Docking Adapter (IDA) on the US side of the ISS. It has a circular transfer passage that has a diameter of 800 mm (31 in).ASTP Docking ModulePressurized Mating AdapterInternational Docking Adapter Docking and berthing of spacecraft is the joining of two space vehicles. This connection can be temporary, or semipermanent such as for space station modules. Docking specifically refers to joining of two separate free-flying space vehicles. Berthing refers to mating operations where an inactive module/vehicle is placed into the mating interface of another space vehicle by using a robotic arm. Because the modern process of un-berthing is laborious and time-consuming, berthing operations are unsuited for rapid crew evacuations in the event of an emergency. A docking/berthing connection is referred to as either 'soft' or 'hard'. Typically, a spacecraft first initiates a soft dock by making contact and latching its docking connector with that of the target vehicle. Once the soft connection is secured, if both spacecraft are pressurized, they may proceed to a hard dock where the docking mechanisms form an airtight seal, enabling interior hatches to be safely opened so that crew and cargo can be transferred. Spacecraft docking capability depends on space rendezvous, the ability of two spacecraft to find each other and station-keep in the same orbit. This was first developed by the United States for Project Gemini. It was planned for the crew of Gemini 6 to rendezvous and manually dock under the command of Wally Schirra, with an uncrewed Agena Target Vehicle in October 1965, but the Agena vehicle exploded during launch. On the revised mission Gemini 6A, Schirra successfully performed a rendezvous in December 1965 with the crewed Gemini 7, approaching to within one foot, but there was no docking capability between two Gemini spacecraft. The first docking with an Agena was successfully performed under the command of Neil Armstrong on Gemini 8 on March 16, 1966. Manual dockings were performed on three subsequent Gemini missions in 1966. The Apollo program depended on lunar orbit rendezvous to achieve its objective of landing men on the Moon. This required first a transposition, docking, and extraction maneuver between the Apollo Command/Service Module (CSM) mother spacecraft and the Lunar Module (LM) landing spacecraft, shortly after both craft were sent out of Earth orbit on a path to the Moon. Then after completing the lunar landing mission, two astronauts in the LM had to rendezvous and dock with the CSM in lunar orbit, in order to be able to return to Earth. The spacecraft were designed to permit intra-vehicular crew transfer through a tunnel between the nose of the Command Module and the roof of the Lunar Module. These maneuvers were first demonstrated in low Earth orbit on March 7, 1969, on Apollo 9, then in lunar orbit in May 1969 on Apollo 10, then in six lunar landing missions. Unlike the United States, which used manual piloted docking throughout the Apollo, Skylab, and Space Shuttle programs, the Soviet Union employed automated docking systems from the beginning of its docking attempts. The first such system, Igla, was successfully tested on October 30, 1967 when the two uncrewed Soyuz test vehicles Kosmos 186 and Kosmos 188 docked automatically in orbit. This was the first successful Soviet docking. Proceeding to crewed docking attempts, the Soviet Union first achieved rendezvous of Soyuz 3 with the uncrewed Soyuz 2 craft on October 25, 1968; docking was unsuccessfully attempted. The first crewed Soviet docking was achieved on January 16, 1969, between Soyuz 4 and Soyuz 5. This early version of the Soyuz spacecraft had no internal transfer tunnel, but two cosmonauts performed an extravehicular transfer from Soyuz 5 to Soyuz 4, landing in a different spacecraft than they had launched in. In the 1970s, the Soviet Union upgraded the Soyuz spacecraft to add an internal transfer tunnel and used it to transport cosmonauts during the Salyut space station program with the first successful space station visit beginning on 7 June 1971, when Soyuz 11 docked to Salyut 1. The United States followed suit, docking its Apollo spacecraft to the Skylab space station in May 1973. In July 1975, the two nations cooperated in the Apollo-Soyuz Test Project, docking an Apollo spacecraft with a Soyuz using a specially designed docking module to accommodate the different docking systems and spacecraft atmospheres. Beginning with Salyut 6 in 1978, the Soviet Union began using the uncrewed Progress cargo spacecraft to resupply its space stations in low earth orbit, greatly extending the length of crew stays. As an uncrewed spacecraft, Progress rendezvoused and docked with the space stations entirely automatically. In 1986, the Igla docking system was replaced with the updated Kurs system on Soyuz spacecraft. Progress spacecraft received the same upgrade several years later.:7 The Kurs system is still used to dock to the Russian Orbital Segment of the ISS today. Berthing of spacecraft can be traced at least as far back as the berthing of payloads into the Space Shuttle payload bay. Such payloads could be either free-flying spacecraft captured for maintenance/return, or payloads temporarily exposed to the space environment at the end of the Remote Manipulator System. Several different berthing mechanisms were used during the Space Shuttle era. Some of them were features of the Payload Bay (e.g., the Payload Retention Latch Assembly), while others were airborne support equipment (e.g., the Flight Support Structure used for HST servicing missions).

[ "Unmanned spacecraft", "Service module" ]
Parent Topic
Child Topic
    No Parent Topic