A Scott-T transformer (also called a Scott connection) is a type of circuit used to produce two-phase electric power ( 2 φ, 90 degree phase rotation) from a three-phase ( 3 φ, 120 degree phase rotation) source, or vice versa. The Scott connection evenly distributes a balanced load between the phases of the source. The Scott three-phase transformer was invented by a Westinghouse engineer Charles F. Scott in the late 1890s to bypass Thomas Edison's more expensive rotary converter and thereby permit two-phase generator plants to drive three-phase motors. A Scott-T transformer (also called a Scott connection) is a type of circuit used to produce two-phase electric power ( 2 φ, 90 degree phase rotation) from a three-phase ( 3 φ, 120 degree phase rotation) source, or vice versa. The Scott connection evenly distributes a balanced load between the phases of the source. The Scott three-phase transformer was invented by a Westinghouse engineer Charles F. Scott in the late 1890s to bypass Thomas Edison's more expensive rotary converter and thereby permit two-phase generator plants to drive three-phase motors. At the time of the invention, two-phase motor loads also existed and the Scott connection allowed connecting them to newer three-phase supplies with the currents equal on the three phases. This was valuable for getting equal voltage drop and thus feasible regulation of the voltage from the electric generator (the phases cannot be varied separately in a three-phase machine). Nikola Tesla's original polyphase power system was based on simple-to-build two-phase four-wire components. However, as transmission distances increased, the more transmission-line efficient three-phase system became more common. (Three phase power can be transmitted with only three wires, where the two-phase power systems required four wires, two per phase.) Both 2 φ and 3 φ components coexisted for a number of years and the Scott-T transformer connection allowed them to be interconnected. Assuming the desired voltage is the same on the two and three phase sides, the Scott-T transformer connection (shown right) consists of a centre-tapped 1:1 ratio main transformer, T1, and a √3/2 (≈86.6%) ratio teaser transformer, T2. The centre-tapped side of T1 is connected between two of the phases on the three-phase side. Its centre tap then connects to one end of the lower turn count side of T2, the other end connects to the remaining phase. The other side of the transformers then connect directly to the two pairs of a two-phase four-wire system.