English

Neurolaw

Neurolaw is an emerging field of interdisciplinary study that explores the effects of discoveries in neuroscience on legal rules and standards. Drawing from neuroscience, philosophy, social psychology, cognitive neuroscience, and criminology, neurolaw practitioners seek to address not only the descriptive and predictive issues of how neuroscience is and will be used in the legal system, but also the normative issues of how neuroscience should and should not be used. Neurolaw is an emerging field of interdisciplinary study that explores the effects of discoveries in neuroscience on legal rules and standards. Drawing from neuroscience, philosophy, social psychology, cognitive neuroscience, and criminology, neurolaw practitioners seek to address not only the descriptive and predictive issues of how neuroscience is and will be used in the legal system, but also the normative issues of how neuroscience should and should not be used. The most prominent questions that have emerged from this exploration are as follows: To what extent can a tumor or brain injury alleviate criminal punishment? Can sentencing or rehabilitation regulations be influenced by neuroscience? Who is permitted access to images of a person's brain? Neuroscience is beginning to address these questions in its effort to understand human behavior, and will potentially shape future aspects of legal processes. New insights into the psychology and cognition of the brain have been made available by functional magnetic resonance imaging (fMRI). These new technologies were a break from the conventional and primitive views of the brain that have been prevalent in the legal system for centuries. Brain imaging has provided a much deeper insight into thought processes, and will have an effect on the law because it contests customary beliefs about mental development. Because the science is still developing and because there is substantial opportunity for misuse, the legal realm recognizes the need to proceed cautiously. Neurolaw proponents are quickly finding means to apply neuroscience to a variety of different contexts. For example, intellectual property could be better evaluated through neuroscience. Major areas of current research include applications in the courtroom, how neuroscience can and should be used legally, and how the law is created and applied. Neuroscience and the law have interacted over a long history, but interest spiked in the late 1990s. After the term neurolaw was first coined by Sherrod J. Taylor in 1991, scholars from both fields began to network through presentations and dialogs. This led to an increasing pull to publish books, articles, and other literature. The Gruter Institute for Law and Behavioral Research and the Dana Foundation were the first groups to provide funding for the new interdisciplinary field. Parallel to the expansion of neurolaw, an emergence of ethics specifically regarding neuroscience was developing as well. The intersection of neurolaw and ethics was able to be better scrutinized by the initiation of the Law and Neuroscience Project in 2007. The MacArthur Foundation launched Phase I of its project through a $10 million grant in hope of integrating the two fields. The initiative sustained forty projects addressing a multitude of issues, including experimental and theoretical data that will provide further evidence as to how neuroscience may eventually shape the law. This new field of study has also piqued the interests of several universities. Baylor College of Medicine's Initiative on Neuroscience and the Law’s research seeks to research, educate, and make policy change. The University of Pennsylvania’s Center for Neuroscience and Society began in July 2009, and is working towards confronting the social, legal, and ethical inferences of neuroscience. The term neurolaw was first used in practice by the neuroscientist and attorney J. Sherrod Taylor in 1991. Taylor's book, Neurolaw: Brain and Spinal Cord Injury (1997), was used as a resource for attorneys to properly introduce medical jargon into the courtroom and to further develop the implications of neuroscience on litigation. In addition, Taylor explained the consequences of Daubert v. Merrell Dow Pharmaceuticals. This United States Supreme Court case resulted in what is now known as Daubert Standard, which sets rules regarding the use of scientific evidence in the courtroom. Behavioral testing and neuroimaging evidence offer a potentially accurate method of predicting human behavior. This advancement would be beneficial particularly for determining guilty criminal sentences or discerning which criminals deserve to be released on parole or detained in jail due to the possibility of future offenses. Not only could it aid in the process of recidivism, it could also show an indication of the need for personal rehabilitation. In light of this information and its potential applications, the legal system seeks to create a balance between just punishment and penalties based on the ability to predict additional criminal activity. The tendency of the United States criminal justice system has been to limit the degree to which one can claim innocence based on mental illness. During the middle of the 20th century, many courts through the Durham Rules and the American Law Institute Model Penal Code, among others, had regarded impaired volition as legitimate grounds for the insanity defense. However, when John Hinckley was acquitted due to insanity, a reversal of opinion occurred, which then spurred a narrowing definition of mental illness. Decisions became increasingly based on the M’Naghten Rules, which asserted that unless one was able to prove that a mental illness kept him or her from knowing that the act was wrong, or knowing the disposition of the criminal act, one would not be able to be tried as mentally handicapped. Contemporary research conducted on the prefrontal cortex has criticized this standpoint because it considers impaired volition as a factor. Many courts are now considering 'irresistible impulse' as legitimate grounds for mental illness.One of the factors neuroscience has added to the insanity defense is the claim that the brain “made someone do it.” In these cases, the argument is based on an understanding that decisions are made before the person is able to consciously realize what is happening. More research on control and inhibition mechanisms will allow further modifications to the insanity defense. Impaired functioning of the PFC is evidence proving that a prime factor in mental illness is an issue of volition. Many experiments using MRI show that one of the functions of the PFC is to bias a person towards taking the more difficult action. This action is representative of a long-term reward, and it is competing with an action that will lead to immediate satisfaction. It is responsible for moral reasoning, including regret. Individual variations that impair the PFC are extremely detrimental to the decision-making process, and give an individual a greater likelihood in a committing a crime he or she would have otherwise not committed. Injuries or illnesses that lead to a persistent vegetative state have come to the forefront of many ethical, legal, and scientific issues regarding brain death. It is a difficult subject to know when someone is beyond hope for recovery, as well as to decide who has the right to make the decision of when death is most appropriate. Research to determine a person’s cognitive state has helped develop an understanding of the vegetative state. While a person can be awake and conscious, he or she may not show any signs of awareness or recognition to external stimulation. In 2005, research was conducted on a 23-year-old female who suffered severe head trauma due to an automobile accident. The woman was diagnosed to be in a vegetative state; after five months she continued to be unresponsive, but did show normal sleep and wake cycles. Using fMRI technology, researchers concluded that she was able to understand external stimuli, showing a response via activity in specific regions of the brain. For example, there was increased activity in the middle and superior temporal gyri similar to activity exhibited by control subjects. This positive response reveals potential for medical imaging to be used to understand the implications of brain death, and to help answer legal, scientific, and ethical questions pertaining to brain death. In addition to questions involving how neuroscience should influence criminal and civil law, neurolaw also encompasses ethical questions regarding nootropics, more commonly known as mind-enhancing drugs. A plethora of drugs are already known to cause a variety of effects on the brain, for example, the stimulatory action of caffeine. Similarly, current research suggests that the future may hold even more powerful medications that can specifically target and alter brain function. The potential to significantly improve one's concentration, memory, or cognition has raised numerous questions on the legality of these substances, and their appropriateness for various uses, such as studying for an exam. Analogous to the controversy over the use of anabolic steroids in professional sports, many high schools and universities are wary of students eventually using nootropics to artificially boost academic performance.

[ "Educational neuroscience", "Social neuroscience" ]
Parent Topic
Child Topic
    No Parent Topic