In mathematics, the split-octonions are an 8-dimensional nonassociative algebra over the real numbers. Unlike the standard octonions, they contain non-zero elements which are non-invertible. Also the signatures of their quadratic forms differ: the split-octonions have a split-signature (4,4) whereas the octonions have a positive-definite signature (8,0). In mathematics, the split-octonions are an 8-dimensional nonassociative algebra over the real numbers. Unlike the standard octonions, they contain non-zero elements which are non-invertible. Also the signatures of their quadratic forms differ: the split-octonions have a split-signature (4,4) whereas the octonions have a positive-definite signature (8,0). Up to isomorphism, the octonions and the split-octonions are the only two octonion algebras over the real numbers. There are corresponding split octonion algebras over any field F. The octonions and the split-octonions can be obtained from the Cayley–Dickson construction by defining a multiplication on pairs of quaternions. We introduce a new imaginary unit ℓ and write a pair of quaternions (a, b) in the form a + ℓb. The product is defined by the rule: