English

Hardware description language

In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits. In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits. A hardware description language enables a precise, formal description of an electronic circuit that allows for the automated analysis and simulation of an electronic circuit. It also allows for the synthesis of a HDL description into a netlist (a specification of physical electronic components and how they are connected together), which can then be placed and routed to produce the set of masks used to create an integrated circuit. A hardware description language looks much like a programming language such as C; it is a textual description consisting of expressions, statements and control structures. One important difference between most programming languages and HDLs is that HDLs explicitly include the notion of time. HDLs form an integral part of electronic design automation (EDA) systems, especially for complex circuits, such as application-specific integrated circuits, microprocessors, and programmable logic devices. Due to the exploding complexity of digital electronic circuits since the 1970s (see Moore's law), circuit designers needed digital logic descriptions to be performed at a high level without being tied to a specific electronic technology, such as CMOS or BJT. HDLs were created to implement register-transfer level abstraction, a model of the data flow and timing of a circuit. There are two major hardware description languages: VHDL and Verilog. There are different types of description in them'dataflow, behavioral and structural'.Example of dataflow of VHDL: HDLs are standard text-based expressions of the structure of electronic systems and their behaviour over time. Like concurrent programming languages, HDL syntax and semantics include explicit notations for expressing concurrency. However, in contrast to most software programming languages, HDLs also include an explicit notion of time, which is a primary attribute of hardware. Languages whose only characteristic is to express circuit connectivity between a hierarchy of blocks are properly classified as netlist languages used in electric computer-aided design (CAD). HDL can be used to express designs in structural, behavioral or register-transfer-level architectures for the same circuit functionality; in the latter two cases the synthesizer decides the architecture and logic gate layout. HDLs are used to write executable specifications for hardware. A program designed to implement the underlying semantics of the language statements and simulate the progress of time provides the hardware designer with the ability to model a piece of hardware before it is created physically. It is this executability that gives HDLs the illusion of being programming languages, when they are more precisely classified as specification languages or modeling languages. Simulators capable of supporting discrete-event (digital) and continuous-time (analog) modeling exist, and HDLs targeted for each are available. It is certainly possible to represent hardware semantics using traditional programming languages such as C++, which operate on control flow semantics as opposed to data flow, although to function as such, programs must be augmented with extensive and unwieldy class libraries. Generally, however, software programming languages do not include any capability for explicitly expressing time, and thus cannot function as hardware description languages. Before the introduction of System Verilog in 2002, C++ integration with a logic simulator was one of the few ways to use object-oriented programming in hardware verification. System Verilog is the first major HDL to offer object orientation and garbage collection.

[ "Field-programmable gate array", "Verilog Procedural Interface", "Altera Hardware Description Language", "VHSIC", "Verilog-A", "FpgaC", "top down design methodology", "vhsic hardware description language", "verilog hardware description language", "Verilog-AMS", "VHDL-AMS", "JHDL", "AHPL", "hardware design languages", "Hardware verification language" ]
Parent Topic
Child Topic
    No Parent Topic