English

Advanced Configuration and Power Interface

In a computer, the Advanced Configuration and Power Interface (ACPI) provides an open standard that operating systems can use to discover and configure computer hardware components, to perform power management by (for example) putting unused components to sleep, and to perform status monitoring. First released in December 1996, ACPI aims to replace Advanced Power Management (APM), the MultiProcessor Specification, and the Plug and Play BIOS (PnP) Specification. ACPI brings the power management under the control of the operating system, as opposed to the previous BIOS-centric system that relied on platform-specific firmware to determine power management and configuration policies. The specification is central to the Operating System-directed configuration and Power Management (OSPM) system, an implementation for ACPI which removes device management responsibilities from legacy firmware interfaces via a UI. Internally, ACPI advertises the available components and their functions to the operating system kernel using instruction lists ('methods') provided through the system firmware (Unified Extensible Firmware Interface (UEFI) or BIOS), which the kernel parses. ACPI then executes the desired operations written in ACPI Machine Language (such as the initialization of hardware components) using an embedded minimal virtual machine. Intel, Microsoft and Toshiba originally developed the standard, while HP, Huawei and Phoenix also participated later. In October 2013, ACPI Special Interest Group (ACPI SIG), the original developers of the ACPI standard, agreed to transfer all assets to the UEFI Forum, in which all future development will take place. The UEFI Forum published the latest version of the standard, 'Revision 6.3', in end of January 2019. The firmware-level ACPI has three main components: the ACPI tables, the ACPI BIOS, and the ACPI registers. Unlike its predecessors, such as the APM or PnP BIOS, the ACPI implements little of its functionality in the ACPI BIOS code, whose main role is to load the ACPI tables in system memory. Instead, most of the firmware ACPI functionality is provided in bytecode of ACPI Machine Language (AML), a Turing-complete, domain-specific low-level language, stored in the ACPI tables. To make use of these tables, the operating system must have an interpreter for the AML bytecode. A reference AML interpreter implementation is provided by the ACPI Component Architecture (ACPICA). At the BIOS development time, AML bytecode is compiled from the ASL (ACPI Source Language) code. As ACPI also replaces PnP BIOS, it also provides a hardware enumerator, mostly implemented in the Differentiated System Description Table (DSDT) ACPI table. The advantage of a bytecode approach is that unlike PnP BIOS code (which was 16-bit), the ACPI bytecode may be used in any operating system, even in 64-bit long mode. Overall design decision was not without criticism. In November 2003, Linus Torvalds—author of the Linux kernel—described ACPI as 'a complete design disaster in every way'. In 2001, other senior Linux software developers like Alan Cox expressed concerns about the requirements that bytecode from an external source must be run by the kernel with full privileges, as well as the overall complexity of the ACPI specification. In 2014, Mark Shuttleworth, founder of the Ubuntu Linux distribution, compared ACPI with Trojan horses. The ACPI Component Architecture (ACPICA), mainly written by Intel's engineers, provides an open-source platform-independent reference implementation of the operating system–related ACPI code. The ACPICA code is used by Linux, Haiku and FreeBSD, which supplement it with their operating-system specific code.

[ "Computer hardware", "Real-time computing", "Operating system", "Embedded system", "State (computer science)", "Power (physics)" ]
Parent Topic
Child Topic
    No Parent Topic