Earth systems engineering and management (ESEM) is a discipline used to analyze, design, engineer and manage complex environmental systems. It entails a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. At its core, ESEM looks to 'rationally design and manage coupled human-natural systems in a highly integrated and ethical fashion' ESEM is a newly emerging area of study that has taken root at the University of Virginia, Cornell and other universities throughout the United States. Founders of Earth Systems Engineering & Management are Braden Allenby and Michael Gorman.In the UK, the Centre for Earth Systems Engineering Research (CESER) at Newcastle University has a large ESEM programme, led by Professor Richard Dawson. Earth systems engineering and management (ESEM) is a discipline used to analyze, design, engineer and manage complex environmental systems. It entails a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. At its core, ESEM looks to 'rationally design and manage coupled human-natural systems in a highly integrated and ethical fashion' ESEM is a newly emerging area of study that has taken root at the University of Virginia, Cornell and other universities throughout the United States. Founders of Earth Systems Engineering & Management are Braden Allenby and Michael Gorman.In the UK, the Centre for Earth Systems Engineering Research (CESER) at Newcastle University has a large ESEM programme, led by Professor Richard Dawson. For centuries now, mankind has been utilizing the earth and its natural resources to advance civilization and develop technology. 'As a principle result of Industrial Revolutions and associated changes in human demographics, technology systems, cultures, and economic systems have been the evolution of an Earth in which the dynamics of major natural systems are increasingly dominated by human activity'. In many ways, ESEM views the earth as a human artifact. 'In order to maintain continued stability of both natural and human systems, we need to develop the ability to rationally design and manage coupled human-natural systems in a highly integrated and ethical fashion- an Earth Systems Engineering and Management (ESEM) capability'. Over the past five years, the concept of Earth Systems Engineering and Management has been developed by a few individuals. One of particular note is Braden Allenby. Allenby holds that the foundation upon which ESEM is built is the notion that “the Earth, as it now exists, is a product of human design”. In fact there are no longer any natural systems left in the world, “there are no places left on Earth that don’t fall under humanity’s shadow”. “So the question is not, as some might wish, whether we should begin ESEM, because we have been doing it for a long time, albeit unintentionally. The issue is whether we will assume the ethical responsibility to do ESEM rationally and responsibly”. Unlike the traditional engineering and management process “which assume a high degree of knowledge and certainty about the systems behavior and a defined endpoint to the process,” ESEM “will be in constant dialog with , as they – and we and our cultures – change and coevolve together into the future”. ESEM is a new concept, however there are a number of fields “such as industrial ecology, adaptive management, and systems engineering that can be relied on to enable rapid progress in developing” ESEM as a discipline. The premise of ESEM is that science and technology can provide successful and lasting solutions to human-created problems such as environmental pollution and climate-change. This assumption has recently been challenged in Techno-Fix: Why Technology Won’t Save Us or the Environment ESEM, as all technological control and manipulation, causes unintended and inherently unavoidable negative consequences. Furthermore, due to the limitations of reductionist science, it is inherently impossible to predict all negative impacts of ESEM. Consequently, ESEM can be considered a high-risk technological fix, which attempts to address symptoms of the planetary environmental crisis rather than root causes, which are dysfunctional human behavior such as human overpopulation and overconsumption. Adaptive management is a key aspect of ESEM. Adaptive management is a way of approaching environmental management. It assumes that there is a great deal of uncertainty in environmental systems and holds that there is never a final solution to an earth systems problem. Therefore, once action has been taken, the Earth Systems Engineer will need to be in constant dialogue with the system, watching for changes and how the system evolves. This way of monitoring and managing ecosystems accepts nature's inherent uncertainty and embraces it by never concluding to one certain cure to a problem. Earth Systems engineering is essentially the use of systems analysis methods in the examination of environmental problems. When analyzing complex environmental systems, there are numerous data sets, stakeholders and variables. It is therefore appropriate to approach such problems with a systems analysis method. Essentially there are “six major phases of a properly-conducted system study”. The six phases are as follows: Part of the systems analysis process includes determining the goals of the system. The key components of goal development include the development of a Descriptive Scenario, a Normative Scenario and Transitive Scenario. Essentially, the Descriptive Scenario “describe the situation as it is tell how it got to be that way” (Gibson, 1991). Another important part of the Descriptive Scenario is how it “point out the good features and the unacceptable elements of the status quo”. Next, the Normative Scenario shows the final outcome or the way the system should operate under ideal conditions once action has been taken. For the Earth Systems approach, the “Normative Scenario” will involve the most complicated analysis. The Normative Scenario will deal with stakeholders, creating a common trading zone or location for the free exchange of ideas to come up with a solution of where a system may be restored to or just how exactly a system should be modified. Finally the Transitive scenario comes up with the actual process of changing a system from a Descriptive state to a Normative state. Often, there is not one final solution, as noted in adaptive management. Typically an iterative process ensues as variables and inputs change and the system coevolves with the analysis.